Back to Search Start Over

Artificial Intelligence in Andrology: From Semen Analysis to Image Diagnostics.

Authors :
Ghayda, Ramy Abou
Cannarella, Rossella
Calogero, Aldo E.
Shah, Rupin
Rambhatla, Amarnath
Zohdy, Wael
Kavoussi, Parviz
Avidor-Reiss, Tomer
Boitrelle, Florence
Mostafa, Taymour
Saleh, Ramadan
Toprak, Tuncay
Birowo, Ponco
Salvio, Gianmaria
Calik, Gokhan
Shinnosuke Kuroda
Kaiyal, Raneen Sawaid
Ziouziou, Imad
Crafa, Andrea
Nguyen Ho Vinh Phuoc
Source :
World Journal of Men's Health. Jan2024, Vol. 42 Issue 1, p39-61. 23p.
Publication Year :
2024

Abstract

Artificial intelligence (AI) in medicine has gained a lot of momentum in the last decades and has been applied to various fields of medicine. Advances in computer science, medical informatics, robotics, and the need for personalized medicine have facilitated the role of AI in modern healthcare. Similarly, as in other fields, AI applications, such as machine learning, artificial neural networks, and deep learning, have shown great potential in andrology and reproductive medicine. AI-based tools are poised to become valuable assets with abilities to support and aid in diagnosing and treating male infertility, and in improving the accuracy of patient care. These automated, AI-based predictions may offer consistency and efficiency in terms of time and cost in infertility research and clinical management. In andrology and reproductive medicine, AI has been used for objective sperm, oocyte, and embryo selection, prediction of surgical outcomes, cost-effective assessment, development of robotic surgery, and clinical decision-making systems. In the future, better integration and implementation of AI into medicine will undoubtedly lead to pioneering evidence-based breakthroughs and the reshaping of andrology and reproductive medicine. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22874208
Volume :
42
Issue :
1
Database :
Academic Search Index
Journal :
World Journal of Men's Health
Publication Type :
Academic Journal
Accession number :
174429047
Full Text :
https://doi.org/10.5534/wjmh.230050