Back to Search Start Over

The Manufacturing Conditions for the Direct and Reproducible Formation of Electrospun PCL/Gelatine 3D Structures for Tissue Regeneration.

Authors :
Howard, Chloe Jayne
Paul, Aumrita
Duruanyanwu, Justin
Sackho, Kenza
Campagnolo, Paola
Stolojan, Vlad
Source :
Nanomaterials (2079-4991). Dec2023, Vol. 13 Issue 24, p3107. 14p.
Publication Year :
2023

Abstract

Electrospinning is a versatile technique for fabricating nanofibrous scaffolds for tissue engineering applications. However, the direct formation of 3D sponges through electrospinning has previously not been reproducible. We used a Taguchi experimental design approach to optimise the electrospinning parameters for forming PCL and PCL/gelatine 3D sponges. The following parameters were investigated to improve sponge formation: solution concentration, humidity, and solution conductivity. Pure PCL sponges were achievable. However, a much fluffier sponge formed by increasing the solution conductivity with gelatine. The optimal conditions for sponge formation 24 w/v% 80:20 PCL:gelatine on aluminium foil at ≥70% humidity, 15 cm, 22 kV and 1500 µL/h. The resulting sponge had a highly porous structure with a fibre diameter of ~1 µm. They also supported significantly higher cell viability than 2D electrospun mats, dropcast films of the same material and even the TCP positive control. Our study demonstrates that the direct formation of PCL/gelatine 3D sponges through electrospinning is feasible and promising for tissue engineering applications. The sponges have a highly porous structure and support cell viability, which are essential properties for tissue engineering scaffolds. Further studies are needed to optimise the manufacturing process and evaluate the sponges' long-term performance in vivo. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
13
Issue :
24
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
174463704
Full Text :
https://doi.org/10.3390/nano13243107