Back to Search Start Over

High Frequency Solution-Processed Organic Field-Effect Transistors with High-Resolution Printed Short Channels.

Authors :
Losi, Tommaso
Witczak, Lukasz
Lysieri, Mateusz
Rossi, Pietro
Moretti, Paola
Bertarelli, Chiara
Mattoli, Virgilio
Caironi*, Mario
Source :
Advanced Functional Materials. 11/23/2023, Vol. 33 Issue 48, p1-9. 9p.
Publication Year :
2023

Abstract

Organic electronics is an emerging technology that enables the fabrication of devices with low-cost and simple solution-based processes at room temperature. In particular, it is an ideal candidate for the Internet of Things since devices can be easily integrated in everyday objects, potentially creating a distributed network of wireless communicating electronics. Recent efforts allowed to boost operational frequency of organic field-effect transistors (OFETs), required to achieve efficient wireless communication. However, in the majority of cases, in order to increase the dynamic performances of OFETs, masks based lithographic techniques are used to reduce device critical dimensions, such as channel and overlap lengths. This study reports the successful integration of direct written metal contacts defining a 1.4 μm short channel, printed with ultra-precise deposition technique (UPD), in fully solution fabricated n-type OFETs. An average transition frequency as high as 25.5 MHz is achieved at 25 V. This result demonstrates the potential of additive, high-resolution direct-writing techniques for the fabrication of organic electronics operating in the high-frequency regime. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
33
Issue :
48
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
174487555
Full Text :
https://doi.org/10.1002/adfm.202302656