Back to Search
Start Over
Coexistence of two coacervate phases of polyglycine in water suggested by polymer reference interaction site model theory.
- Source :
-
Journal of Chemical Physics . 12/28/2023, Vol. 159 Issue 24, p1-8. 8p. - Publication Year :
- 2023
-
Abstract
- Mixing Gibbs energy and phase equilibria of aqueous solutions of polyglycine were studied theoretically by means of polymer reference interaction site model integral equation theory combined with the Gibbs–Duhem method. In addition to the ordinary liquid–liquid phase separation between dilute and concentrated solutions, the theoretical calculation predicted the coexistence of two coacervate phases, namely, the lower- and higher-density coacervates. The relative thermodynamic stabilities of these two phases change with the polymerization degree of polyglycine. The higher-density coacervate phase was rapidly stabilized by increasing the polymer length, and the lower-density phase became metastable at large polymers. The hydrogen bonds between the peptide chains were strengthened, and water was thermodynamically destabilized in the higher-density coacervate. A possible relation with the formation of amyloid fibril within a liquid droplet is also discussed. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 159
- Issue :
- 24
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 174524235
- Full Text :
- https://doi.org/10.1063/5.0185157