Back to Search Start Over

Influence of polyurea on dynamic response behaviors of cylindrical composite shells under internal explosion load.

Authors :
Tian, Chao
Yang, Sha
Feng, Jiahe
Dong, Qi
Source :
Composite Structures. Feb2024, Vol. 329, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

The dynamic responses of open-ended cylindrical shells with different polyurea layers under explosion load are studied in the current paper. The influences of polyurea thickness and position on the response characteristics of the composite shell are analyzed in detailed. The results indicate that the polyurea layer has significant influence the failure mode and energy absorption of the composite shell. Both polyurea in the interlayer and on the outer layer will decrease the bending moments of the composite shells of equal mass in the initial deformation process, which is easier to make the increase of the deformation heights of metal liner of composite shells with polyurea layers. The polyurea in the interlayer will weaken the constraint of metal liner, delay the fracture of fiber and restrain the bulking phenomenon of metal liner. With increase of polyurea thickness, the bulking phenomenon becomes less obvious and the deformation height of liner decreases non-monotonously. On the contrary, the outer layer polyurea will cause the bulking phenomenon of metal liner more obviously with increase of the polyurea thickness.But the outerlayer polyurea will restrict the deformation of the inner materials and limit the scattering of fiber fragment, improving the safety distance of the explosion vessel. In the whole process of anti-explosion, both polyurea in interlayer and outer layer absorb less than 10% of total energy, but they can significantly change the energy absorption of metal liner and fiber composite. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02638223
Volume :
329
Database :
Academic Search Index
Journal :
Composite Structures
Publication Type :
Academic Journal
Accession number :
174578485
Full Text :
https://doi.org/10.1016/j.compstruct.2023.117800