Back to Search Start Over

Modulation of the optical and transport properties of epitaxial SrNbO3 thin films by defect engineering.

Authors :
Kumar, Shammi
Ahammad, Jibril
Das, Dip
Kumar, Rakesh
Dhar, Sankar
Johari, Priya
Source :
Journal of Applied Physics. 1/7/2024, Vol. 135 Issue 1, p1-12. 12p.
Publication Year :
2024

Abstract

The discovery of strontium niobate (SNO) as a potentially new transparent electrode has generated much interest due to its implications in various optoelectronic devices. Pristine SNO exhibits exceptionally low resistivity (∼10−4 Ω cm) at room temperature. However, this low resistivity occurs due to large number of carrier concentration in the system, which significantly affects its optical transparency (∼40%) in the visible range and hinders its practical applications as a transparent electrode. Here, we show that modulating the growth kinetics via oxygen manipulation is a feasible approach to achieve the desired optoelectronic properties. In particular, epitaxial (001) SNO thin films are grown on (001) lanthanum aluminate by pulsed laser deposition at different oxygen partial pressures and are shown to improve the optical transparency from 40% to 72% (λ = 550 nm) at a marginal cost of electrical resistivity from 2.8 to 8.1 × 10−4 Ω cm. These changes are directly linked with the multi-valence Nb-states, as evidenced by x-ray photoelectron spectroscopy. Furthermore, the defect-engineered SNO films exhibit multiple electronic phases that include pure metallic, coexisting metal-semiconducting-like, and pure semiconducting-like phases as evidenced by low-temperature electrical transport measurements. The intriguing metal-semiconducting coexisting phase is thoroughly analyzed using both perpendicular and angle-dependent magnetoresistance measurements, further supported by a density functional theory-based first-principles study and the observed feature is explained by the quantum correction to the conductivity. Overall, this study shows an exciting avenue for altering the optical and transport properties of SNO epitaxial thin films for their practical use as a next-generation transparent electrode. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
135
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
174637088
Full Text :
https://doi.org/10.1063/5.0179267