Back to Search Start Over

On power-associativity of algebras with no nonzero joint divisor of zero and containing a nonzero central idempotent.

Authors :
Cabrera, Miguel
Diouf, Alassane
Source :
Communications in Algebra. 2024, Vol. 52 Issue 1, p295-304. 10p.
Publication Year :
2024

Abstract

We prove that, if A is an algebra (over a field of characteristic zero) with no nonzero joint divisor of zero and containing a nonzero central idempotent, and if A satisfies the identities (x p , x q , x r) = 0 and (x p ′ , x q ′ , x r ′) = 0 with exponents p , q , r , p ′ , q ′ , r ′ belonging to {1, 2} such that p ≠ r , (p ′ , q ′ , r ′) ≠ (p , q , r) and (p ′ , q ′ , r ′) ≠ (3 − r , 3 − q , 3 − p) , then A is a unital power-associative algebra. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*ALGEBRA
*EXPONENTS
*DIVISOR theory

Details

Language :
English
ISSN :
00927872
Volume :
52
Issue :
1
Database :
Academic Search Index
Journal :
Communications in Algebra
Publication Type :
Academic Journal
Accession number :
174662406
Full Text :
https://doi.org/10.1080/00927872.2023.2239372