Back to Search
Start Over
On power-associativity of algebras with no nonzero joint divisor of zero and containing a nonzero central idempotent.
- Source :
-
Communications in Algebra . 2024, Vol. 52 Issue 1, p295-304. 10p. - Publication Year :
- 2024
-
Abstract
- We prove that, if A is an algebra (over a field of characteristic zero) with no nonzero joint divisor of zero and containing a nonzero central idempotent, and if A satisfies the identities (x p , x q , x r) = 0 and (x p ′ , x q ′ , x r ′) = 0 with exponents p , q , r , p ′ , q ′ , r ′ belonging to {1, 2} such that p ≠ r , (p ′ , q ′ , r ′) ≠ (p , q , r) and (p ′ , q ′ , r ′) ≠ (3 − r , 3 − q , 3 − p) , then A is a unital power-associative algebra. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ALGEBRA
*EXPONENTS
*DIVISOR theory
Subjects
Details
- Language :
- English
- ISSN :
- 00927872
- Volume :
- 52
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Communications in Algebra
- Publication Type :
- Academic Journal
- Accession number :
- 174662406
- Full Text :
- https://doi.org/10.1080/00927872.2023.2239372