Back to Search Start Over

A mechanistic study of the synergistic and counter effects of ultrasonic and solvent treatment on the rheology and asphaltene structure of heavy crude oil.

Authors :
Qajar, Jafar
Razavifar, Mehdi
Riazi, Masoud
Source :
Chemical Engineering & Processing. Jan2024, Vol. 195, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• The joint effects of ultrasound and solvation on oil viscosity were investigated. • The analysis of asphaltene structure by using FTIR and microscopy techniques. • The lowest viscosity was found for irradiation-then-dilution-treated crude oil. • Ultrasonic solvation reduced the ratio of aromatic rings to aliphatic chains. Production from heavy oil reservoirs faces challenges, such as accumulating heavy hydrocarbon materials like asphaltenes near the wellbore, resulting in low recovery rates. To enhance recovery and prevent formation damage, methods often focus on reducing oil viscosity. Solvents and ultrasonic waves have proven effective in this regard, though challenges related to asphaltene aggregation and structural changes persist. This study explores the impact of simultaneously applying ultrasonic radiation and solvents on crude oil's viscosity and asphaltene structure. Toluene and n-heptane, representing aromatic and paraffinic solvents, were employed. Viscosity measurements and Fourier transform infrared spectroscopy tests were conducted on sonicated crude oil diluted with solvents and solvent-diluted crude oil subjected to sonication. Results were compared to untreated and separately treated crude oil samples. The study found that the most effective viscosity reduction method involved blending sonicated oil with toluene under optimal radiation time and concentration conditions. Two primary mechanisms for viscosity reduction were identified. Firstly, there was the dissolution and aggregation of asphaltene clusters. Secondly, chemical changes in asphaltene molecular structure were observed, altering the ratio of aromatic rings to aliphatic chains. This research offers potential insights into how ultrasonication and solvation interact to modify crude oil structure. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02552701
Volume :
195
Database :
Academic Search Index
Journal :
Chemical Engineering & Processing
Publication Type :
Academic Journal
Accession number :
174687991
Full Text :
https://doi.org/10.1016/j.cep.2023.109619