Back to Search Start Over

Passive Photovoltaic Cooling: Advances Toward Low‐Temperature Operation.

Authors :
Liu, Junwei
Zhou, Yifan
Zhou, Zhihua
Du, Yahui
Wang, Cheng
Yang, Xueqing
Lin, Zhenjia
Guo, Zhilin
Zhao, Jun
Ye, Long
Zhang, Haoran
Yan, Jinyue
Source :
Advanced Energy Materials. 1/8/2024, Vol. 14 Issue 2, p1-23. 23p.
Publication Year :
2024

Abstract

With the great increase in installation, photovoltaics will develop as the main power supply source for the world shortly. However, the actual power generation and lifetime of photovoltaics are greatly compromised by the high working temperature under outdoor operation. In this review, the recent advances of four promising passive photovoltaic cooling methods are summarized with the aim to uncover their working principles, cooling performance, and application potential in photovoltaic devices. For radiative cooling, light management strategies with ultraviolet‐photon downshift and sub‐bandgap reflection are discussed in detail to reveal their great potential in reducing photovoltaic working temperature and enhancing power generation. Subsequently, the great cooling benefits of passive evaporative cooling are underlined in terms of its superior cooling power and temperature drop of photovoltaic devices. Moreover, the promising integrated cooling strategy is further highlighted due to its great potential in enhancing electricity production and fresh water supply. Most crucially, the remaining challenges and the authors'r insights are presented to advance the commercial applications of passive cooling methods in photovoltaics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Volume :
14
Issue :
2
Database :
Academic Search Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
174781052
Full Text :
https://doi.org/10.1002/aenm.202302662