Back to Search Start Over

Electrostatically anchored MXene-Thionine hybrid electrodes for a flexible supercapacitor to attain exceptional performance.

Authors :
Zhang, Haoxiang
Farhadi, Bita
Wang, Kang
Xing, Xinxin
Zhu, Yan
Guo, Xin
Wang, Kai
(Frank) Liu, Shengzhong
Source :
Chemical Engineering Journal. Jan2024, Vol. 479, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• Electrostatic anchoring in situ polymerization synthesizes hybrid electrode materials. • MXene collaboratively with high Th loading enhances specific capacity and cycle stability. • Combining supercapacitors with perovskite solar cells achieves rapid charge storage. Portable photorechargeable supercapacitors hold great promise as ideal power sources for future IoT applications. However, the widespread implementation of supercapacitors is hindered by their suboptimal energy density. Organic electrodes, with their high specific capacity, have become rising stars in the energy storage community. Herein, we pioneer an electrostatic-anchoring in situ polymerization reaction pathway to synthesize MXene-organic hybrid electrode materials. Theoretical calculations show that thionine (Th) is the optimal candidate for grafting onto the pseudocapacitive 2D MXene due to its low energy levels, narrow band gap, and multiple active sites. Multilevel interactions between Th and MXene are established to prevent Th from dissolution, to inhibit the MXene from restacking, and to facilitate electron accumulation in Th, thus enhancing the accessibility/absorption of ions in electrolytes and electrode stability. The hybrid electrodes exhibit a specific capacity as high as 4906.7 mF/cm2 at 1 mA cm−2; more importantly, an integrated asymmetric flexible supercapacitor displays high specific capacity (3183.1 mF/cm2) and large energy density (1432.4 mWh/cm2), all three values are the highest among their respective categories. Combining supercapacitors with all-inorganic perovskite solar cells to achieve rapid charge storage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13858947
Volume :
479
Database :
Academic Search Index
Journal :
Chemical Engineering Journal
Publication Type :
Academic Journal
Accession number :
174792759
Full Text :
https://doi.org/10.1016/j.cej.2023.147293