Back to Search Start Over

Organo–organic interactions dominantly drive soil organic carbon accrual.

Authors :
Kang, Jie
Qu, Chenchen
Chen, Wenli
Cai, Peng
Chen, Chengrong
Huang, Qiaoyun
Source :
Global Change Biology. Jan2024, Vol. 30 Issue 1, p1-14. 14p.
Publication Year :
2024

Abstract

Organo–mineral interactions have been regarded as the primary mechanism for the stabilization of soil organic carbon (SOC) over decadal to millennial timescales, and the capacity for soil carbon (C) storage has commonly been assessed based on soil mineralogical attributes, particularly mineral surface availability. However, it remains contentious whether soil C sequestration is exclusively governed by mineral vacancies, making it challenging to accurately predict SOC dynamics. Here, through a 400‐day incubation experiment using 13C‐labeled organic materials in two contrasting soils (i.e., Mollisol and Ultisol), we show that despite the unsaturation of mineral surfaces in both soils, the newly incorporated C predominantly adheres to "dirty" mineral surfaces coated with native organic matter (OM), demonstrating the crucial role of organo–organic interactions in exogenous C sequestration. Such interactions lead to multilayered C accumulation that is not constrained by mineral vacancies, a process distinct from direct organo–mineral contacts. The coverage of native OM by new C, representing the degree of organo–organic interactions, is noticeably larger in Ultisol (~14.2%) than in Mollisol (~5.8%), amounting to the net retention of exogenous C in Ultisol by 0.2–1.3 g kg−1 and in Mollisol by 0.1–1.0 g kg−1. Additionally, organo–organic interactions are primarily mediated by polysaccharide‐rich microbial necromass. Further evidence indicates that iron oxides can selectively preserve polysaccharide compounds, thereby promoting the organo–organic interactions. Overall, our findings provide direct empirical evidence for an overlooked but critically important pathway of C accumulation, challenging the prevailing "C saturation" concept that emphasizes the overriding role of mineral vacancies. It is estimated that, through organo–organic interactions, global Mollisols and Ultisols might sequester ~0.1–1.0 and ~0.3–1.7 Pg C per year, respectively, corresponding to the neutralization of ca. 0.5%–3.0% of soil C emissions or 5%–30% of fossil fuel combustion globally. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13541013
Volume :
30
Issue :
1
Database :
Academic Search Index
Journal :
Global Change Biology
Publication Type :
Academic Journal
Accession number :
175055918
Full Text :
https://doi.org/10.1111/gcb.17147