Back to Search Start Over

Asteroids co-orbital motion classification based on Machine Learning.

Authors :
Ciacci, Giulia
Barucci, Andrea
Di Ruzza, Sara
Alessi, Elisa Maria
Source :
Monthly Notices of the Royal Astronomical Society. Jan2024, Vol. 527 Issue 3, p6439-6454. 16p.
Publication Year :
2024

Abstract

In this work, we explore how to classify asteroids in co-orbital motion with a given planet using Machine Learning. We consider four different kinds of motion in mean motion resonance with the planet, nominally Tadpole at L 4 and L 5, Horseshoe and Quasi-Satellite , building three data sets defined as Real (taking the ephemerides of real asteroids from the JPL Horizons system), Ideal and Perturbed (both simulated, obtained by propagating initial conditions considering two different dynamical systems) for training and testing the Machine Learning algorithms in different conditions. The time series of the variable θ (angle related to the resonance) are studied with a data analysis pipeline defined ad hoc for the problem and composed by: data creation and annotation, time series features extraction thanks to the tsfresh package (potentially followed by selection and standardization) and the application of Machine Learning algorithms for Dimensionality Reduction and Classification. Such approach, based on features extracted from the time series, allows to work with a smaller number of data with respect to Deep Learning algorithms, also allowing to define a ranking of the importance of the features. Physical interpretability of the features is another key point of this approach. In addition, we introduce the SHapley Additive exPlanations for Explainability technique. Different training and test sets are used, in order to understand the power and the limits of our approach. The results show how the algorithms are able to identify and classify correctly the time series, with a high degree of performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00358711
Volume :
527
Issue :
3
Database :
Academic Search Index
Journal :
Monthly Notices of the Royal Astronomical Society
Publication Type :
Academic Journal
Accession number :
175059550
Full Text :
https://doi.org/10.1093/mnras/stad3603