Back to Search
Start Over
Numerical Simulation of Fluid Flow, Solidification, and Solute Distribution in Billets under Combined Mold and Final Electromagnetic Stirring.
- Source :
-
Materials (1996-1944) . Jan2024, Vol. 17 Issue 2, p530. 21p. - Publication Year :
- 2024
-
Abstract
- In this study, a three-dimensional segmented coupled model for continuous casting billets under combined mold and final electromagnetic stirring (M-EMS, F-EMS) was developed. The model was verified by comparing carbon segregation in billets with and without EMS through plant experiments. The findings revealed that both M-EMS and F-EMS induce tangential flow in molten steel, impacting solidification and solute distribution processes within the billet. For M-EMS, with operating parameters of 250A-2Hz, the maximum tangential velocity (velocity projected onto the cross-section) was observed at the liquid phase's edge. For F-EMS, with operating parameters of 250A-6Hz, the maximum tangential velocity occurred at f l = 0.7 . Furthermore, F-EMS accelerated heat transfer in the liquid phase, reducing the central liquid fraction from 0.93 to 0.85. M-EMS intensified the washing effect of molten steel on the solidification front, resulting in the formation of negative segregation within the mold. F-EMS significantly improved the centerline segregation issue, reducing carbon segregation from 1.15 to 1.02. Experimental and simulation results, with and without EMS, were in good agreement, indicating that M+F-EMS leads to a more uniform solute distribution within the billet, with a pronounced improvement in centerline segregation. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 17
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Materials (1996-1944)
- Publication Type :
- Academic Journal
- Accession number :
- 175077088
- Full Text :
- https://doi.org/10.3390/ma17020530