Back to Search Start Over

Temporal evolution of the light emitted by a thin, laser-ionized plasma source.

Authors :
Lee, Valentina
Ariniello, Robert
Doss, Christopher
Wolfinger, Kathryn
Stoltz, Peter
Hansel, Claire
Gessner, Spencer
Cary, John
Litos, Michael
Source :
Physics of Plasmas. Jan2024, Vol. 31 Issue 1, p1-12. 12p.
Publication Year :
2024

Abstract

We present an experimental and simulation-based investigation of the temporal evolution of light emission from a thin, laser-ionized helium plasma source. We demonstrate an analytic model to calculate the approximate scaling of the time-integrated, on-axis light emission with the initial plasma density and temperature, supported by the experiment, which enhances the understanding of plasma light measurement for plasma wakefield accelerator (PWFA) plasma sources. Our model simulates the plasma density and temperature using a split-step Fourier code and a particle-in-cell code. A fluid simulation is then used to model the plasma and neutral density, and the electron temperature as a function of time and position. We then show the numerical results of the space-and-time-resolved light emission and that collisional excitation is the dominant source of light emission. We validate our model by measuring the light emitted by a laser-ionized plasma using a novel statistical method capable of resolving the nanosecond-scale temporal dynamics of the plasma light using a cost-effective camera with microsecond-scale timing jitter. This method is ideal for deployment in the high radiation environment of a particle accelerator that precludes the use of expensive nanosecond-gated cameras. Our results show that our models can effectively simulate the dynamics of a thin, laser-ionized plasma source. In addition, this work provides a detailed understanding of the plasma light measurement, which is one of the few diagnostic signals available for the direct measurement of PWFA plasma sources. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1070664X
Volume :
31
Issue :
1
Database :
Academic Search Index
Journal :
Physics of Plasmas
Publication Type :
Academic Journal
Accession number :
175161589
Full Text :
https://doi.org/10.1063/5.0180416