Back to Search Start Over

Real power loss reduction by Protist and Otocyon megalotis optimization algorithms.

Authors :
Kanagasabai, Lenin
Source :
Soft Computing - A Fusion of Foundations, Methodologies & Applications. Feb2024, Vol. 28 Issue 4, p3107-3121. 15p.
Publication Year :
2024

Abstract

In this paper, Protist algorithm (PA) and Otocyon megalotis optimization algorithm (OOA) are applied to solve the power loss lessening problem. Protist Algorithm (PA) is modelled based on the Protist's natural activities. Protist exists in moist places. The leading nutritious phase is Plasmodium, the energetic and vibrant phase of Protist. In this segment, the organic substance in Protist search for food in surroundings and conceals enzymes for digestion. Natural actions of Otocyon megalotis are emulated to design the OOA approach. In the projected OOA searching of regions in exploration, for foodstuff the Otocyon megalotis mark the prey in the space is indicated as a global exploration. Real power loss reduction and Voltage stability enhancement are the key objectives of the paper. To solve the problem, Protist algorithm (PA) and Otocyon megalotis optimization algorithm. In the course of the migration procedure, the anterior end outspreads and interconnected arterial system that authorize cytoplasm to stream inside. Then, mutation and cross-over probability are employed to augment the performance of the Protist algorithm (PA). With this integration engendering of the population is done. Mutation classes the population exploration agents (PN) in uphill order conferring to the agents appropriateness (fitness) cost. Consequently, the technique splits the organized agents into three fragments rendering to their fitness value. In which PN/3 denotes to the population possess pre-eminent (aptness) fitness values, subsequently with second pre-eminent and poorest aptness (fitness) values. Then, in this paper, Otocyon megalotis optimization algorithm (OOA) is applied for solving the Power loss lessening problem. In the subsequent segment, navigate during the haunt to seal prey previous to the hit was replicated as a local search. In exploration, the data obtained is shared to all the associates of the family unit for continued existence and growth. Examination of the nearby terrain is modelled with reference to the fitness of all entities. Most excellent entity has investigated the majority fascinating terrain and it will be shared with family unit of Otocyon megalotis. Primarily, Otocyon megalotis show that it not involved in hunting. Conversely, as soon as moving near to prey Otocyon megalotis will perform the attack in quick mode. This approach imitated and designed in the local search segment. Authenticity of the Protist algorithm (PA) and Otocyon megalotis optimization algorithm (OOA) is corroborated in 23 benchmark functions, IEEE 30, 57, 300 and 354 test systems. Power Loss reduction achieved with voltage stability enhancement. Real power loss reduction attained. Both the Protist algorithm (PA) and Otocyon megalotis optimization algorithm (OOA) performed well in solving the Power loss reduction problem. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14327643
Volume :
28
Issue :
4
Database :
Academic Search Index
Journal :
Soft Computing - A Fusion of Foundations, Methodologies & Applications
Publication Type :
Academic Journal
Accession number :
175234529
Full Text :
https://doi.org/10.1007/s00500-023-09275-6