Back to Search Start Over

Effect of hydrogen on thermal deformation behavior and microstructure evolution of MoNbHfZrTi refractory high-entropy alloy.

Authors :
Shen, Xiangyang
Liu, Feng
Guan, Jinyuan
Dong, Fuyu
Zhang, Yue
Guo, Zihe
Yuan, Ye
Wang, Binbin
Luo, Liangshun
Su, Yanqing
Cheng, Jun
Yuan, Xiaoguang
Liaw, Peter K.
Source :
Intermetallics. Mar2024, Vol. 166, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

The study examined the thermal-deformation behavior of an MoNbHfZrTi refractory high-entropy alloy (RHEA), which were hydrogenated using a liquid hydrogenation method and then subjected to high-temperature uniaxial compression in the deformation temperature range of 1100–1250 °C and strain rate range of 0.5–10−3 s−1. Test results showed that: (1) When the deformation temperature was between 1100 and 1250 °C, hydrogen addition led to increased high-temperature peak stress of the alloy at higher strain rates of 0.5 and 10−1 s−1. At a low strain rate of ∼10−2 s−1, the addition of hydrogen causes a decrease in the high-temperature peak stress. However, at a lower strain rate of ∼10−3 s−1, hydrogen addition has insignificant effects on the high-temperature peak stress. (2) At a higher strain rate of ∼0.5 s−1, the major reasons for hydrogen-induced hardening of the peak stress were solution strengthening and dislocation pinning. (3) At a low strain rate of 10−2 s−1, the reason for decrease of the peak stress was that the hydrogen addition promoted the formation of precipitated phases, thereby facilitating dynamic recrystallization (DRX), and making the microstructure more uniform at high temperatures. • A new strategy called liquid hydrogenation was applied to RHEAs. • Hydrogen-induced hardening were found during thermal deformation. • Hydrogen accelerates dynamic recrystallization during thermal deformation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09669795
Volume :
166
Database :
Academic Search Index
Journal :
Intermetallics
Publication Type :
Academic Journal
Accession number :
175242555
Full Text :
https://doi.org/10.1016/j.intermet.2024.108193