Back to Search Start Over

Cytotoxicity Enhancement in Osteosarcoma with Multifunctional I-131 Radiotherapeutic Nanoparticles: In Vitro Three-Dimensional Spheroid Model and Release Kinetics Modeling.

Authors :
Marshall, Suphalak Khamruang
Taweesap, Maneerat
Saelim, Boonyisa
Pachana, Verachai
Benlateh, Nadeeya
Sangangam, Sireetorn
Bumrungsin, Achiraya
Kholo-asae, Haswanee
Wongtechanon, Issaree
Source :
Molecules. Feb2024, Vol. 29 Issue 3, p630. 28p.
Publication Year :
2024

Abstract

This novel radiolabeled chitosan nanoparticle, facilitated with curcumin, increased doxorubicin cytotoxicity and radiosensitivity to MG-63 osteosarcoma cells in a three-dimensional model. Delivery of the anti-epidermal growth factor receptor (EGFR) targeted carboxymethyl chitosan nanoparticles, directly labeled with Na131I (ICED-N), achieved deep tumor penetration in a three-dimensional model. Of three kinetic models, the Higuchi model more closely matched the experimental curve and release profiles. The anti-EGFR targeting resulted in a 513-fold greater targeting efficacy to MG-63 (EGFR+) cells than the control fibroblast (EGFR−) cells. The curcumin-enhanced ICED-N (4 × 0.925 MBq) fractionated-dose regime achieved an 18.3-fold increase in cell cytotoxicity compared to the single-dose (1 × 3.70 MBq) doxorubicin-loaded nanoparticle, and a 13.6-fold increase in cell cytotoxicity compared to the single-dose Na131I nanoparticle. Moreover, the ICED-N fractionated dose increased cells in the G2/M phase 8.78-fold, indicating the cell cycle arrest in the G2/M phase is associated with DNA fragmentation, and the intracellular damage is unable to be repaired. Overall, the results indicate that the fractionated dose was more efficacious than a single dose, and curcumin substantially increased doxorubicin cytotoxicity and amplified osteosarcoma cell radiosensitivity to Na131I. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
3
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
175371356
Full Text :
https://doi.org/10.3390/molecules29030630