Back to Search Start Over

Overgroups of exterior powers of an elementary group. levels.

Authors :
Lubkov, Roman
Nekrasov, Ilia
Source :
Linear & Multilinear Algebra. Mar2024, Vol. 72 Issue 4, p563-584. 22p.
Publication Year :
2024

Abstract

We prove a first part of the standard description of groups H lying between an exterior power of an elementary group $ {m}\operatorname {E}_n(R) $ m E n ⁡ (R) and a general linear group $ \operatorname {GL}_{\binom {n}{m}}(R) $ GL (n m) ⁡ (R) for a commutative ring $ R, 2 \in R^{*} $ R , 2 ∈ R ∗ and $ n \geqslant 3m $ n ⩾ 3 m. The description uses the classical notion of a level: for every group H we find a unique ideal A of the ground ring R, which describes H. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*COMMUTATIVE rings

Details

Language :
English
ISSN :
03081087
Volume :
72
Issue :
4
Database :
Academic Search Index
Journal :
Linear & Multilinear Algebra
Publication Type :
Academic Journal
Accession number :
175394328
Full Text :
https://doi.org/10.1080/03081087.2022.2160422