Back to Search Start Over

An orthogonality relation in complex normed spaces based on norm derivatives.

Authors :
Enderami, S. M.
Abtahi, M.
Zamani, A.
Wójcik, P.
Source :
Linear & Multilinear Algebra. Mar2024, Vol. 72 Issue 4, p687-705. 19p.
Publication Year :
2024

Abstract

Let X be a complex normed space. Based on the right norm derivative $ \rho _{_{+}} $ ρ + , we define a mapping $ \rho _{_{\infty }} $ ρ ∞ by \[ \rho_{_{\infty}}(x,y) = \frac1\pi\int_0^{2\pi}{\rm e}^{i\theta}\rho_{_{+}}(x,{\rm e}^{i\theta}y)\,{\rm d}\theta \quad(x,y\in X). \] ρ ∞ (x , y) = 1 π ∫ 0 2 π e i θ ρ + (x , e i θ y) d θ (x , y ∈ X). The mapping $ \rho _{_{\infty }} $ ρ ∞ has a good response to some geometrical properties of X. For instance, we prove that $ \rho _{_{\infty }}(x,y)=\rho _{_{\infty }}(y,x) $ ρ ∞ (x , y) = ρ ∞ (y , x) for all $ x, y \in X $ x , y ∈ X if and only if X is an inner product space. In addition, we define a $ \rho _{_{\infty }} $ ρ ∞ -orthogonality in X and show that a linear mapping preserving $ \rho _{_{\infty }} $ ρ ∞ -orthogonality has to be a scalar multiple of an isometry. A number of challenging problems in the geometry of complex normed spaces are also discussed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03081087
Volume :
72
Issue :
4
Database :
Academic Search Index
Journal :
Linear & Multilinear Algebra
Publication Type :
Academic Journal
Accession number :
175394336
Full Text :
https://doi.org/10.1080/03081087.2022.2160947