Back to Search Start Over

Neopolyploidy has variable effects on the diversity and composition of the wild strawberry microbiome.

Authors :
Anneberg, Thomas J.
Cullen, Nevin P.
O'Neill, Elizabeth M.
Wei, Na
Ashman, Tia‐Lynn
Source :
American Journal of Botany. Feb2024, p1. 11p. 5 Illustrations, 2 Charts.
Publication Year :
2024

Abstract

Premise Methods Results Conclusions Whole‐genome duplication (neopolyploidy) can instantly differentiate the phenotype of neopolyploids from their diploid progenitors. These phenotypic shifts in organs such as roots and leaves could also differentiate the way neopolyploids interact with microbial species. While some studies have addressed how specific microbial interactions are affected by neopolyploidy, we lack an understanding of how genome duplication affects the diversity and composition of microbial communities.We performed a common garden experiment with multiple clones of artificially synthesized autotetraploids and their ancestral diploids, derived from 13 genotypes of wild strawberry, <italic>Fragaria vesca</italic>. We sequenced epiphytic bacteria and fungi from roots and leaves and characterized microbial communities and leaf functional traits.Autotetraploidy had no effect on bacterial alpha diversity of either organ, but it did have a genotype‐dependent effect on the diversity of fungi on leaves. In contrast, autotetraploidy restructured the community composition of leaf bacteria and had a genotype‐dependent effect on fungal community composition in both organs. The most differentially abundant bacterial taxon on leaves belonged to the <italic>Sphingomonas</italic>, while a member of the <italic>Trichoderma</italic> was the most differentially abundant fungal taxon on roots. Ploidy‐induced change in leaf size was strongly correlated with a change in bacterial but not fungal leaf communities.Genome duplication can immediately alter aspects of the plant microbiome, but this effect varies by host genotype and bacterial and fungal community. Expanding these studies to wild settings where plants are exposed continuously to microbes are needed to confirm the patterns observed here. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029122
Database :
Academic Search Index
Journal :
American Journal of Botany
Publication Type :
Academic Journal
Accession number :
175480530
Full Text :
https://doi.org/10.1002/ajb2.16287