Back to Search
Start Over
A novel image deep learning–based sub-centimeter pulmonary nodule management algorithm to expedite resection of the malignant and avoid over-diagnosis of the benign.
- Source :
-
European Radiology . Mar2024, Vol. 34 Issue 3, p2048-2061. 14p. - Publication Year :
- 2024
-
Abstract
- Objectives: With the popularization of chest computed tomography (CT) screening, there are more sub-centimeter (≤ 1 cm) pulmonary nodules (SCPNs) requiring further diagnostic workup. This area represents an important opportunity to optimize the SCPN management algorithm avoiding "one-size fits all" approach. One critical problem is how to learn the discriminative multi-view characteristics and the unique context of each SCPN. Methods: Here, we propose a multi-view coupled self-attention module (MVCS) to capture the global spatial context of the CT image through modeling the association order of space and dimension. Compared with existing self-attention methods, MVCS uses less memory consumption and computational complexity, unearths dimension correlations that previous methods have not found, and is easy to integrate with other frameworks. Results: In total, a public dataset LUNA16 from LIDC-IDRI, 1319 SCPNs from 1069 patients presenting to a major referral center, and 160 SCPNs from 137 patients from three other major centers were analyzed to pre-train, train, and validate the model. Experimental results showed that performance outperforms the state-of-the-art models in terms of accuracy and stability and is comparable to that of human experts in classifying precancerous lesions and invasive adenocarcinoma. We also provide a fusion MVCS network (MVCSN) by combining the CT image with the clinical characteristics and radiographic features of patients. Conclusion: This tool may ultimately aid in expediting resection of the malignant SCPNs and avoid over-diagnosis of the benign ones, resulting in improved management outcomes. Clinical relevance statement: In the diagnosis of sub-centimeter lung adenocarcinoma, fusion MVCSN can help doctors improve work efficiency and guide their treatment decisions to a certain extent. Key Points: • Advances in computed tomography (CT) not only increase the number of nodules detected, but also the nodules that are identified are smaller, such as sub-centimeter pulmonary nodules (SCPNs). • We propose a multi-view coupled self-attention module (MVCS), which could model spatial and dimensional correlations sequentially for learning global spatial contexts, which is better than other attention mechanisms. • MVCS uses fewer huge memory consumption and computational complexity than the existing self-attention methods when dealing with 3D medical image data. Additionally, it reaches promising accuracy for SCPNs' malignancy evaluation and has lower training cost than other models. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09387994
- Volume :
- 34
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- European Radiology
- Publication Type :
- Academic Journal
- Accession number :
- 175530199
- Full Text :
- https://doi.org/10.1007/s00330-023-10026-2