Back to Search Start Over

Study on flow and heat transfer characteristics of salt solution ice slurry.

Authors :
Gao, Penghui
Li, Zhiyong
Yan, Fuchun
Chen, Kezheng
Cao, An
Source :
International Journal of Refrigeration. Mar2024, Vol. 159, p1-16. 16p.
Publication Year :
2024

Abstract

• Experimental flow and heat transfer characteristics of salt solution is carried out. • A simulation model of salt solution ice slurry was proposed based on CFD-PBM. • Flow velocity and ice volume fraction have great influence on flow and heat transfer. As a phase change material, ice slurry allows the storage of thermal energy in the form of latent heat. This has great advantages in terms of reducing energy consumption and environmental protection, and is being widely used. In this study, based on the Eulerian-Eulerian CFD model and the Population Balance Model (PBM), the flow and heat transfer characteristic of salt solution ice slurry was simulation studied, which included the pressure drop, friction coefficient, volume fraction, distribution of ice crystals and local heat transfer coefficient during the flow and solidification of salt solution ice slurry in different conditions. And the experimental system is set up to verify the results of the model and analyze the variation rules of these parameters. The results showed that in salt solutions with different concentrations, when the flow rate and solid phase volume fraction increase, the pressure drop and local heat transfer coefficient of the ice slurry will increase. The surface heat transfer coefficient reached to 2.5 × 103 W m-2 K-1, 2.9 × 103 W m-2 K-1, and 3.2 × 103 W m-2 K-1 when ice crystal volume fraction was 5 %, 10 %, and 15 %, respectively. The study will contribute to understanding of the changes in basic characteristics of salt solution slurry during the flow and phase transition processes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01407007
Volume :
159
Database :
Academic Search Index
Journal :
International Journal of Refrigeration
Publication Type :
Academic Journal
Accession number :
175546340
Full Text :
https://doi.org/10.1016/j.ijrefrig.2023.12.007