Back to Search Start Over

Electronic friction near metal surface: Incorporating nuclear quantum effect with ring polymer molecular dynamics.

Authors :
Bi, Rui-Hao
Dou, Wenjie
Source :
Journal of Chemical Physics. 2/21/2024, Vol. 160 Issue 7, p1-14. 14p.
Publication Year :
2024

Abstract

The molecular dynamics with electronic friction (MDEF) approach can accurately describe nonadiabatic effects at metal surfaces in the weakly nonadiabatic limit. That being said, the MDEF approach treats nuclear motion classically such that the nuclear quantum effects are completely missing in the approach. To address this limitation, we combine Electronic Friction with Ring Polymer Molecular Dynamics (EF-RPMD). In particular, we apply the averaged electronic friction from the metal surface to the centroid mode of the ring polymer. We benchmark our approach against quantum dynamics to show that EF-RPMD can accurately capture zero-point energy as well as transition dynamics. In addition, we show that EF-RPMD can correctly predict the electronic transfer rate near metal surfaces in the tunneling limit as well as the barrier crossing limit. We expect that our approach will be very useful to study nonadiabatic dynamics near metal surfaces when nuclear quantum effects become essential. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
160
Issue :
7
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
175563699
Full Text :
https://doi.org/10.1063/5.0187646