Back to Search Start Over

Observational operator for fair model calibration with ground NO2 measurements.

Authors :
Li Fang
Jianbing Jin
Arjo Segers
Ke Li
Ji Xia
Wei Han
Baojie Li
Hai Xiang Lin
Lei Zhu
Song Liu
Hong Liao
Source :
Geoscientific Model Development Discussions. 2/9/2024, p1-22. 22p.
Publication Year :
2024

Abstract

Measurements collected from ground monitoring stations have gained popularity as a valuable data source for calibrating numerical models and correcting model errors through data assimilation. Both model calibration and assimilation are driven by the penalty quantified by simulation-minus-observations. However, the penal forces are challenged by the existence of a spatial scale disparity between model simulations and observations. The Chemical Transport Models (CTMs) allow the division of the atmosphere into grid cells, yet their spatial resolution may not align with the limited range of in-situ measurements, particularly for short-lived air pollutants. Within a broad grid pattern, air pollutant concentrations can exhibit significant heterogeneity due to their rapid generation and dissipation. Ground observations with traditional methods (including nearest search and grid mean) are less representative when compared to model simulations. This study develops a new land-use-based representative (LUBR) observational operator to generate spatially representative gridded observation for model calibration and evaluation. It incorporates high-resolution urban-rural land use data to address intra-grid variability. The LUBR operator is validated to consistently provide insights that align with satellite OMI measurements. It is an effective solution to accurately quantify these spatial scale mismatches and further resolve them via assimilation. Model calibrations with 2015-2017 NO2 measurement in China demonstrates biases and errors differed substantially when the LUBR and other operator are used, respectively. The results highlight the importance of considering fine-scale urban-rural differences when comparing models and observations, especially for short-lived pollutants like NO2. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19919611
Database :
Academic Search Index
Journal :
Geoscientific Model Development Discussions
Publication Type :
Academic Journal
Accession number :
175580761
Full Text :
https://doi.org/10.5194/gmd-2023-216