Back to Search Start Over

Calcareous nannoplankton response to middle-late Eocene climate and sea-level changes in the SW Neo-Tethys.

Authors :
Messaoud, Jihede Haj
Thibault, Nicolas
Aljahdali, Mohammed H.
Yaich, Chokri
Gu, Yang-Guang
Source :
Marine Micropaleontology. Mar2024, Vol. 187, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

We investigate the response of calcareous nannoplankton to the middle-late Eocene transition in the SW Neo-Tethys and compare our data to published results from X-ray diffraction (XRD) analysis, element content from X-ray fluorescence (XRF) and the abundance of microfossils in the coarse fractions of the sediment. The nannofossil assemblage is mainly composed of Reticulofenestra spp. (avg. 44%), Sphenolithus spp. (avg. 20%), Discoaste r spp. (avg. 18%) and Pontosphaera spp. (avg. 10%). The Relative abundance of Zygrhablithus bijugatus and the Chiasmolithus ratio are used with the visual assessment to evaluate the preservation. The Sphenolithus - Reticulofenestra turnover occurred before the MECO at the Lutetian-Bartonian boundary. Besides the significant influence of an evolutionary gradient caused by the disappearance of numerous species of Sphenoliths, Discoasterids, and Coccolithaceae, and the first appearance of multiple species of reticulofenestrids, paleoenvironmental conditions imposed a significant impact on the calcareous nannofossil assemblages. The abundance of ostracods and the planktic/benthic foraminifera ratio depict relative sea-level changes. The microfossil assemblages and the lithological composition of the sediments track paleoclimatic and paleoenvironmental changes across the Lutetian to Priabonian. Dry conditions marked the middle Lutetian, followed by increased variability in hydrolyzing conditions during the late Lutetian and early Bartonian. An eutrophic and restricted ecosystem with high fine-grained material input is suggested for the Priabonian. • Increased calcareous nannofossil diversity from 42 Ma to 38.2 Ma. • An abrupt change from oligotrophic to mesotrophic conditions at ∼42 Ma. • Sphenolithus - Reticulofenestra turnover at the Lutetian-Bartonian boundary. • The nannofossil assemblage expressed no temperature changes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03778398
Volume :
187
Database :
Academic Search Index
Journal :
Marine Micropaleontology
Publication Type :
Academic Journal
Accession number :
175638240
Full Text :
https://doi.org/10.1016/j.marmicro.2023.102329