Back to Search Start Over

Experimental investigation of natural convection Al2O3-MWCNT/water hybrid nanofluids inside a square cavity.

Authors :
Scott, Temiloluwa O.
Ewim, Daniel R.E.
Eloka-Eboka, Andrew C.
Source :
Experimental Heat Transfer. 2024, Vol. 37 Issue 3, p294-312. 19p.
Publication Year :
2024

Abstract

The use of nanofluids for convectional heat transfer has become a spry area of research in recent years with the aim of improving heat transfer efficiency. Hybrid nanofluids have attracted significant attention and are advancing research and industrial applications since they involve employing more than one type of nanoparticle(s) in a base fluid. They enhance heat transfer by combining the chemical and physical properties of several nanoparticles concurrently and providing the properties in a homogeneous state. However, few experimental studies have focused on natural convective heat transfer using hybrid nanofluids. In this study, the natural convection of alumina – multiwalled carbon nanotube/water hybrid nanofluids formulated using a two-step method at a percentage weight ratio of 10:90 Al2O3: MWCNT at various nanoparticles volume concentrations of 0.00, 0.05, 0.10, 0.15, and 0.20 vol% was studied inside a square cavity (AR = 1) with two vertical walls which are isothermal, aimed at the Rayleigh number (Ra) range of 2.81 × 108 to 8.58 × 108. The average Nusselt number (Nuav), heat transfer coefficient (hav), heat transfer (Qav), and Rayleigh number (Ra) were considered at varying temperature gradients of 20°C – 50°C. Al2O3-MWCNT/water hybrid nanofluid with 0.10 vol% volume concentration was discovered to have the maximum value for hav,Qav, and Nuav. However, it was also observed that a further increase in the hybrid nanoparticles' volume concentration led to their deterioration at various temperature gradients. The maximum enhancements of 44%, 49%, and 42% were noted for hav,Qav, and Nuav, respectively, at ∆T = 50 °C, in comparison with the base fluid. Al2O3-MWCNT/water hybrid nanofluids application in a square cavity demonstrated enhanced natural convection. This present study concluded that hybrid nanofluids as heat transfer fluid significantly improved heat transfer performance compared to the base fluid. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08916152
Volume :
37
Issue :
3
Database :
Academic Search Index
Journal :
Experimental Heat Transfer
Publication Type :
Academic Journal
Accession number :
175640030
Full Text :
https://doi.org/10.1080/08916152.2022.2136284