Back to Search Start Over

Dynamics and observational signatures of shell-like black hole mimickers.

Authors :
Danielsson, Ulf
Lehner, Luis
Pretorius, Frans
Source :
Physical Review D: Particles, Fields, Gravitation & Cosmology. 12/15/2021, Vol. 104 Issue 12, p1-1. 1p.
Publication Year :
2021

Abstract

We undertake the task of studying the nonlinear dynamics of quantum gravity motivated alternatives to black holes that in the classical limit appear as ultracompact shells of matter. We develop a formalism that should be amenable to numerical solution in generic situations. For a concrete model, we focus on the spherically symmetric anti-de Sitter (AdS) black bubble--a shell of matter at the Buchdahl radius separating a Schwarzschild exterior from an AdS interior. We construct a numerical code to study the radial dynamics of and accretion onto AdS black bubbles, with exterior matter provided by scalar fields. In doing so, we develop numerical methods that could be extended to future studies beyond spherical symmetry. Regarding AdS black bubbles in particular, we find that the original prescription for the internal matter fluxes needed to stabilize the black bubble is inadequate in dynamical settings, and we propose a two-parameter generalization of the flux model to fix this. To allow for more efficient surveys of parameter space, we develop a simpler numerical model adapted to spherically symmetric bubble dynamics. We identify regions of parameter space that do allow for stable black bubbles and moreover allow control to a desired end state after an accretion episode. Based on these results, and evolution of scalar fields on black bubble backgrounds, we speculate on some observational consequences if what are currently presumed to be black holes in the Universe were actually black bubbles. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24700010
Volume :
104
Issue :
12
Database :
Academic Search Index
Journal :
Physical Review D: Particles, Fields, Gravitation & Cosmology
Publication Type :
Periodical
Accession number :
175712930
Full Text :
https://doi.org/10.1103/PhysRevD.104.124011