Back to Search Start Over

Evaluating the Bayesian causal inference model of intentional binding through computational modeling.

Authors :
Tanaka, Takumi
Source :
Scientific Reports. 2/8/2024, Vol. 14 Issue 1, p1-15. 15p.
Publication Year :
2024

Abstract

Intentional binding refers to the subjective compression of the time interval between an action and its consequence. While intentional binding has been widely used as a proxy for the sense of agency, its underlying mechanism has been largely veiled. Bayesian causal inference (BCI) has gained attention as a potential explanation, but currently lacks sufficient empirical support. Thus, this study implemented various computational models to describe the possible mechanisms of intentional binding, fitted them to individual observed data, and quantitatively evaluated their performance. The BCI models successfully isolated the parameters that potentially contributed to intentional binding (i.e., causal belief and temporal prediction) and generally better explained an observer’s time estimation than traditional models such as maximum likelihood estimation. The estimated parameter values suggested that the time compression resulted from an expectation that the actions would immediately cause sensory outcomes. Furthermore, I investigated the algorithm that realized this BCI and found probability-matching to be a plausible candidate; people might heuristically reconstruct event timing depending on causal uncertainty rather than optimally integrating causal and temporal posteriors. The evidence demonstrated the utility of computational modeling to investigate how humans infer the causal and temporal structures of events and individual differences in that process. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
175814020
Full Text :
https://doi.org/10.1038/s41598-024-53071-7