Back to Search Start Over

Randomization-based Joint Central Limit Theorem and Efficient Covariate Adjustment in Randomized Block 2K Factorial Experiments.

Authors :
Liu, Hanzhong
Ren, Jiyang
Yang, Yuehan
Source :
Journal of the American Statistical Association. Mar2024, Vol. 119 Issue 545, p136-150. 15p.
Publication Year :
2024

Abstract

Randomized block factorial experiments are widely used in industrial engineering, clinical trials, and social science. Researchers often use a linear model and analysis of covariance to analyze experimental results; however, limited studies have addressed the validity and robustness of the resulting inferences because assumptions for a linear model might not be justified by randomization in randomized block factorial experiments. In this article, we establish a new finite population joint central limit theorem for usual (unadjusted) factorial effect estimators in randomized block 2 K factorial experiments. Our theorem is obtained under a randomization-based inference framework, making use of an extension of the vector form of the Wald–Wolfowitz–Hoeffding theorem for a linear rank statistic. It is robust to model misspecification, numbers of blocks, block sizes, and propensity scores across blocks. To improve the estimation and inference efficiency, we propose four covariate adjustment methods. We show that under mild conditions, the resulting covariate-adjusted factorial effect estimators are consistent, jointly asymptotically normal, and generally more efficient than the unadjusted estimator. In addition, we propose Neyman-type conservative estimators for the asymptotic covariances to facilitate valid inferences. Simulation studies and a clinical trial data analysis demonstrate the benefits of the covariate adjustment methods. for this article are available online. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01621459
Volume :
119
Issue :
545
Database :
Academic Search Index
Journal :
Journal of the American Statistical Association
Publication Type :
Academic Journal
Accession number :
175846018
Full Text :
https://doi.org/10.1080/01621459.2022.2102985