Back to Search Start Over

Aggregation‐Induced Emission Photosensitizer‐Armored Magnetic Nanoparticles for Sepsis Treatment: Combating Multidrug‐Resistant Bacteria and Alleviating Inflammation.

Authors :
Wang, Jia‐Li
Chen, Yuan
Song, Jia‐Xing
Guo, Bing‐Wei
Xia, Feng‐Wei
Wan, Yu
Wu, Wan‐Xia
Zhang, Chungu
Feng, Shun
Wu, Ming‐Yu
Source :
Advanced Functional Materials. 3/4/2024, Vol. 34 Issue 10, p1-14. 14p.
Publication Year :
2024

Abstract

Sepsis, a life‐threatening condition stemming from an uncontrolled host immune response to bacterial infections, continues to impose a significant global burden with high morbidity and mortality. Addressing the challenges posed by antimicrobial resistance and uncontrollable inflammation remains a challenge in sepsis treatment. Moreover, traditional antibacterial materials have low bacterial trapping efficiency and inevitable prolonged circulation within the bloodstream, resulting in suboptimal antibacterial effects, metabolic complications, and undesirable side effects. In this study, an innovative solution is introduced through the development of Fe3O4@SH@TBTCP‐PMB, an aggregation‐induced emission (AIE) photosensitizer (PS)‐armored magnetic nanoparticles (NPs). It has high reactive oxygen species (ROS) generation efficiency and an exceptional ability to capture Gram‐positive bacteria with over 80% enrichment efficiency within just 1 h, even at low bacterial concentrations. Under white light illumination, 100 µg mL−1 of Fe3O4@SH@TBTCP‐PMB effectively eliminated more than 99.9% of methicillin‐resistant Staphylococcus aureus (MRSA). Furthermore, its magnetic separation properties efficiently prevent systemic blood circulation and associated side effects. Most importantly, Fe3O4@SH@TBTCP‐PMB demonstrates superior anti‐inflammatory effects by regulating cytokines, reducing adhesion molecule expression, and managing oxidative stress levels. This multifunctional approach significantly enhances sepsis survival rates, offering a promising strategy for combating multidrug‐resistant (MDR) bacterial infections in sepsis patients while addressing inflammation‐related complications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
10
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
175852917
Full Text :
https://doi.org/10.1002/adfm.202312162