Back to Search Start Over

Impact of CAD/CAM Material Thickness and Translucency on the Polymerization of Dual-Cure Resin Cement in Endocrowns.

Authors :
Ikemoto, Soshi
Komagata, Yuya
Yoshii, Shinji
Masaki, Chihiro
Hosokawa, Ryuji
Ikeda, Hiroshi
Source :
Polymers (20734360). Mar2024, Vol. 16 Issue 5, p661. 12p.
Publication Year :
2024

Abstract

The objective of this study is to evaluate the impact of the thickness and translucency of various computer-aided design/computer-aided manufacturing (CAD/CAM) materials on the polymerization of dual-cure resin cement in endocrown restorations. Three commercially available CAD/CAM materials—lithium disilicate glass (e.max CAD), resin composite (CERASMART), and a polymer-infiltrated ceramic network (ENAMIC)—were cut into plates with five different thicknesses (1.5, 3.5, 5.5, 7.5, and 9.5 mm) in both high-translucency (HT) and low-translucency (LT) grades. Panavia V5, a commercial dual-cure resin cement, was polymerized through each plate by light irradiation. Post-polymerization treatment was performed by aging at 37 °C for 24 h under light-shielding conditions. The degree of conversion and Vickers hardness measurements were used to characterize the polymerization of the cement. The findings revealed a significant decrease in both the degree of conversion and Vickers hardness with increasing thickness across all CAD/CAM materials. Notably, while the differences in the degree of conversion and Vickers hardness between the HT and LT grades of each material were significant immediately after photoirradiation, these differences became smaller after post-polymerization treatment. Significant differences were observed between samples with a 1.5 mm thickness (conventional crowns) and those with a 5.5 mm or greater thickness (endocrowns), even after post-polymerization treatment. These results suggest that dual-cure resin cement in endocrown restorations undergoes insufficient polymerization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
16
Issue :
5
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
175992370
Full Text :
https://doi.org/10.3390/polym16050661