Back to Search Start Over

Sequential Co-Immobilization of Enzymes on Magnetic Nanoparticles for Efficient l-Xylulose Production.

Authors :
Patel, Sanjay K. S.
Gupta, Rahul K.
Karuppanan, Karthikeyan K.
Kim, In-Won
Lee, Jung-Kul
Source :
International Journal of Molecular Sciences. Mar2024, Vol. 25 Issue 5, p2746. 15p.
Publication Year :
2024

Abstract

Multi-enzymatic strategies have shown improvement in bioconversion during cofactor regeneration. In this study, purified l-arabinitol 4-dehydrogenase (LAD) and nicotinamide adenine dinucleotide oxidase (Nox) were immobilized via individual, mixed, and sequential co-immobilization approaches on magnetic nanoparticles, and were evaluated to enhance the conversion of l-arabinitol to l-xylulose. Initially, the immobilization of LAD or Nox on the nanoparticles resulted in a maximum immobilization yield and relative activity of 91.4% and 98.8%, respectively. The immobilized enzymes showed better pH and temperature profiles than the corresponding free enzymes. Furthermore, co-immobilization of these enzymes via mixed and sequential methods resulted in high loadings of 114 and 122 mg/g of support, respectively. Sequential co-immobilization of these enzymes proved more beneficial for higher conversion than mixed co-immobilization because of better retaining Nox residual activity. Sequentially co-immobilized enzymes showed a high relative conversion yield with broader pH, temperature, and storage stability profiles than the controls, along with high reusability. To the best of our knowledge, this is the first report on the mixed or sequential co-immobilization of LAD and Nox on magnetic nanoparticles for l-xylulose production. This finding suggests that selecting a sequential co-immobilization strategy is more beneficial than using individual or mixed co-immobilized enzymes on magnetic nanoparticles for enhancing conversion applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
5
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
175994889
Full Text :
https://doi.org/10.3390/ijms25052746