Back to Search
Start Over
Efficient degradation of polystyrene microplastic pollutants in soil by dielectric barrier discharge plasma.
- Source :
-
Journal of Hazardous Materials . Apr2024, Vol. 468, pN.PAG-N.PAG. 1p. - Publication Year :
- 2024
-
Abstract
- In this study, the atmospheric dielectric barrier discharge (DBD) plasma was proposed for the degradation of polystyrene microplastics (PS-MPs) for the first time, due to its ability to generate reactive oxygen species (ROS). The local temperature in plasma was found to play a crucial role, as it enhanced the degradation reaction induced by ROS when it exceeded the melting temperature of PS-MPs. Factors including applied voltage, air flow rate, and PS-MPs concentration were investigated, and the degradation products were analyzed. High plasma energy and adequate supply of ROS were pivotal in promoting degradation. At 20.1 kV, the degradation efficiency of PS-MPs reached 98.7% after 60 min treatment, with gases (mainly CO x , accounting for 96.4%) as the main degradation products. At a concentration of 1 wt%, the PS-MPs exhibited a remarkable conversion rate of 90.6% to CO x , showcasing the degradation performance and oxidation degree of this technology. Finally, the degradation mechanism of PS-MPs combined with the detection results of ROS was suggested. This work demonstrates that DBD plasma is a promising strategy for PS-MPs degradation, with high energy efficiency (8.80 mg/kJ) and degradation performance (98.7% within 1 h), providing direct evidence for the rapid and comprehensive treatment of MP pollutants. [Display omitted] • Atmospheric DBD plasma was applied to the in-situ degradation of PS-MPs. • PS-MPs were efficiently degraded by ROS directly generated in the sample layer. • After 60 min of DBD plasma treatment, the degradation efficiency reached 98.7%. • Melting temperature served as the initiation for the effective degradation of MPs. • At 1 wt%, PS-MPs exhibited a remarkable conversion rate of 90.6% to COx. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03043894
- Volume :
- 468
- Database :
- Academic Search Index
- Journal :
- Journal of Hazardous Materials
- Publication Type :
- Academic Journal
- Accession number :
- 176034908
- Full Text :
- https://doi.org/10.1016/j.jhazmat.2024.133754