Back to Search Start Over

Preparation of environmentally friendly, high strength, adhesion and stability hydrogel based on lignocellulose framework.

Authors :
Meng, Xiangzhen
Qi, Linghui
Xia, Changlei
Jin, Xin
Zhou, Jing
Dong, Anran
Li, Jianzhang
Yang, Rui
Source :
International Journal of Biological Macromolecules. Apr2024:Part 2, Vol. 263, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Hydrogels are extensively utilized in the fields of electronic skin, environmental monitoring, biological dressings due to their excellent flexibility and conductivity. However, traditional hydrogel materials possess drawbacks such as environmental toxicity, low strength, poor stability, and water loss deactivation, which limited its frequent applications. Here, a flexible conductive hydrogel called wood-based DES hydrogel (WDH) with high strength, high adhesion, high stability, and high sensitivity was successfully synthesized by using environmentally friendly lignocellulose as skeleton and deep eutectic solvent as matrix. The strength of WDH prepared from lignocellulose framework is approximately 50 times higher than poly deep eutectic solvent hydrogel, and about 4.5 times higher than that prepared from cellulose skeleton. The WDH exhibits stable adhesion to most common materials and demonstrates exceptional dimensional stability. Its conductivity remains unaffected by water, even after prolonged exposure to air, maintaining a value of 0.0245 S/m. The anisotropy inherent in the system results in three distinct linear sensing intervals for WDH, exhibiting a maximum sensitivity of 5.45. This paper verified the advantages of lignocellulose framework in improving the strength and stability of hydrogels, which provided a new strategy for the development of sensor materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01418130
Volume :
263
Database :
Academic Search Index
Journal :
International Journal of Biological Macromolecules
Publication Type :
Academic Journal
Accession number :
176195478
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.130158