Back to Search Start Over

Normalized solutions for a biharmonic Choquard equation with exponential critical growth in R4.

Authors :
Chen, Wenjing
Wang, Zexi
Source :
Zeitschrift für Angewandte Mathematik und Physik (ZAMP). Apr2024, Vol. 75 Issue 2, p1-20. 20p.
Publication Year :
2024

Abstract

In this paper, we study the following biharmonic Choquard-type problem Δ 2 u - β Δ u = λ u + (I μ ∗ F (u)) f (u) , in R 4 , ∫ R 4 | u | 2 d x = c 2 > 0 , u ∈ H 2 (R 4) , where β ≥ 0 , λ ∈ R , I μ = 1 | x | μ with μ ∈ (0 , 4) , F(u) is the primitive function of f(u), and f is a continuous function with exponential critical growth. By using the mountain-pass argument, we prove the existence of radial ground-state solutions for the above problem. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00442275
Volume :
75
Issue :
2
Database :
Academic Search Index
Journal :
Zeitschrift für Angewandte Mathematik und Physik (ZAMP)
Publication Type :
Academic Journal
Accession number :
176249122
Full Text :
https://doi.org/10.1007/s00033-024-02200-3