Back to Search
Start Over
Normalized solutions for a biharmonic Choquard equation with exponential critical growth in R4.
- Source :
-
Zeitschrift für Angewandte Mathematik und Physik (ZAMP) . Apr2024, Vol. 75 Issue 2, p1-20. 20p. - Publication Year :
- 2024
-
Abstract
- In this paper, we study the following biharmonic Choquard-type problem Δ 2 u - β Δ u = λ u + (I μ ∗ F (u)) f (u) , in R 4 , ∫ R 4 | u | 2 d x = c 2 > 0 , u ∈ H 2 (R 4) , where β ≥ 0 , λ ∈ R , I μ = 1 | x | μ with μ ∈ (0 , 4) , F(u) is the primitive function of f(u), and f is a continuous function with exponential critical growth. By using the mountain-pass argument, we prove the existence of radial ground-state solutions for the above problem. [ABSTRACT FROM AUTHOR]
- Subjects :
- *BIHARMONIC equations
*EXPONENTIAL functions
*CONTINUOUS functions
Subjects
Details
- Language :
- English
- ISSN :
- 00442275
- Volume :
- 75
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Zeitschrift für Angewandte Mathematik und Physik (ZAMP)
- Publication Type :
- Academic Journal
- Accession number :
- 176249122
- Full Text :
- https://doi.org/10.1007/s00033-024-02200-3