Back to Search Start Over

Exosomes from senescent epithelial cells activate pulmonary fibroblasts via the miR-217-5p/Sirt1 axis in paraquat-induced pulmonary fibrosis.

Authors :
Zhang, Min
Xue, Xiang
Lou, Zhenshuai
Lin, Yanhong
Li, Qian
Huang, Changbao
Source :
Journal of Translational Medicine. 3/26/2024, Vol. 22 Issue 1, p1-13. 13p.
Publication Year :
2024

Abstract

Background: Paraquat (PQ) is a widely used and highly toxic herbicide that poses a significant risk to human health. The main consequence of PQ poisoning is pulmonary fibrosis, which can result in respiratory failure and potentially death. Our research aims to uncover a crucial mechanism in which PQ poisoning induces senescence in epithelial cells, ultimately regulating the activation of pulmonary fibroblasts through the exosomal pathway. Methods: Cellular senescence was determined by immunohistochemistry and SA-β-Gal staining. The expression of miRNAs was measured by qPCR. Pulmonary fibroblasts treated with specific siRNA of SIRT1 or LV-SIRT1 were used to analysis senescent exosomes-mediated fibroblasts activation. Luciferase reporter assay and western blot were performed to elucidated the underlying molecular mechanisms. The effects of miR-217-5p antagomir on pulmonary fibrosis were assessed in PQ-poisoned mice models. Results: Impairing the secretion of exosomes effectively mitigates the harmful effects of senescent epithelial cells on pulmonary fibroblasts, offering protection against PQ-induced pulmonary fibrosis in mice. Additionally, we have identified a remarkable elevation of miR-217-5p expression in the exosomes of PQ-treated epithelial cells, which specifically contributes to fibroblasts activation via targeted inhibition of SIRT1, a protein involved in cellular stress response. Remarkably, suppression of miR-217-5p effectively impaired senescent epithelial cells-induced fibroblasts activation. Further investigation has revealed that miR-217-5p attenuated SIRT1 expression and subsequently resulted in enhanced acetylation of β-catenin and Wnt signaling activation. Conclusion: These findings highlight a potential strategy for the treatment of pulmonary fibrosis induced by PQ poisoning. Disrupting the communication between senescent epithelial cells and pulmonary fibroblasts, particularly by targeting the miR-217-5p/SIRT1/β-catenin axis, may be able to alleviate the effects of PQ poisoning on the lungs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14795876
Volume :
22
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Translational Medicine
Publication Type :
Academic Journal
Accession number :
176265890
Full Text :
https://doi.org/10.1186/s12967-024-05094-x