Back to Search Start Over

Design and performance of an ultrahigh vacuum spectroscopic-imaging scanning tunneling microscope with a hybrid vibration isolation system.

Authors :
Chung, Pei-Fang
Venkatesan, Balaji
Su, Chih-Chuan
Chang, Jen-Te
Cheng, Hsu-Kai
Liu, Che-An
Yu, Henry
Chang, Chia-Seng
Guan, Syu-You
Chuang, Tien-Ming
Source :
Review of Scientific Instruments. 3/1/2024, Vol. 95 Issue 3, p1-8. 8p.
Publication Year :
2024

Abstract

A spectroscopic imaging-scanning tunneling microscope (SI-STM) allows for the atomic scale visualization of the surface electronic and magnetic structure of novel quantum materials with a high energy resolution. To achieve the optimal performance, a low vibration facility is required. Here, we describe the design and performance of an ultrahigh vacuum STM system supported by a hybrid vibration isolation system that consists of a pneumatic passive and a piezoelectric active vibration isolation stage. We present the detailed vibrational noise analysis of the hybrid vibration isolation system, which shows that the vibration level can be suppressed below 10−8 m/sec/√Hz for most frequencies up to 100 Hz. Combined with a rigid STM design, vibrational noise can be successfully removed from the tunneling current. We demonstrate the performance of our STM system by taking high resolution spectroscopic maps and topographic images on several quantum materials. Our results establish a new strategy to achieve an effective vibration isolation system for high-resolution STM and other scanning probe microscopies to investigate the nanoscale quantum phenomena. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00346748
Volume :
95
Issue :
3
Database :
Academic Search Index
Journal :
Review of Scientific Instruments
Publication Type :
Academic Journal
Accession number :
176342790
Full Text :
https://doi.org/10.1063/5.0189100