Back to Search Start Over

Energy efficiency analysis and optimization of heat exchange network under the goal of “double carbon”: a case for production process of isopropyl acetate.

Authors :
Maierhaba Abudoureheman
Yue Shi
Bo Wei
Yunpeng Zhao
Source :
Energy Sources Part A: Recovery, Utilization & Environmental Effects. 2024, Vol. 46 Issue 1, p2080-2092. 13p.
Publication Year :
2024

Abstract

In order to response to the “double carbon” strategy for reducing emissions, chemical production processes were optimized to lower the amount of utility work and equipment investment expenses with increasing the system’s capacity for heat recovery. A sensitivity analysis and the energy efficiency analysis with pinch technique were performed on the distillation and purification of the 30 kt/a isopropyl acetate (IPAC) production process by using process simulation software of Aspen Plus. The IPAC refining tower optimization results show that the purity of the refined IPAC could be reached 99.9% at circumstances of 44 theoretical plates, 19 feed plates, and 0.755 reflux ratio. According to the optimized energy consumption data from Aspen Energy Analyzer (AEA), the cold and heat logistics matching was performed. It can be seen that the heat exchange network was tuned to maximize energy recovery by reducing the amount of utility work. The optimized cold and heat utility usage were 734.69 and 727.81 kW, which meaning that compared with original process, the cold and heat utility usage energy can be save with 10.0%, respectively. The optimized results provide a certain theoretical basis and solution for improving energy saving and reducing investment costs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15567036
Volume :
46
Issue :
1
Database :
Academic Search Index
Journal :
Energy Sources Part A: Recovery, Utilization & Environmental Effects
Publication Type :
Academic Journal
Accession number :
176345293
Full Text :
https://doi.org/10.1080/15567036.2024.2302380