Back to Search Start Over

Fate of sulfamethoxazole in wetland sediment under controlled redox conditions.

Authors :
He, Yujie
Jiang, Longxue
Wu, Xuan
Zhang, Wenhui
Zong, Yao
Wang, Jiacheng
Chen, Jinmei
Shan, Jun
Kong, Deyang
Ji, Rong
Source :
Water Research. May2024, Vol. 254, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• NERs was more preferable to form under oxic conditions in sterile sediment. • Biotic SMX removal: oxic ≈ iron-reducing > methanogenic >> nitrate-reducing conditions. • More complexity of microbes-SMX transformation network implies higher transformation. • Natural organic matter did not further influence abiotic and biotic removal of SMX. • Iron-reducing condition achieved optimal and eco-friendly SMX removal from wetland sediment. Redox condition is an important controlling factor for contaminant removal in constructed wetlands; however, the redox-sensitivity of antibiotic removal in wetland sediments under controlled conditions with specific electron acceptors remains unclear. Here, using a 14C radioactive tracer, we explored fate of sulfamethoxazole (SMX) in a wetland sediment slurry under oxic, nitrate-reducing, iron-reducing, and methanogenic conditions. In the sterile treatment, unlike the comparable SMX dissipation from the water phase under four redox conditions, non-extractable residues (NERs) of SMX was highest formed in the sediment under oxic condition, mainly in sequestered and ester/amide-linked forms. Microorganisms markedly promoted SMX transformation in the slurry. The dissipation rate of SMX and its transformation products (TPs) followed the order: oxic ≈ iron-reducing > methanogenic >> nitrate-reducing conditions, being consistent with the dynamics of microbial community in the sediment, where microbial diversity was greater and networks connectivity linking dominant bacteria to SMX transformation were more complex under oxic and iron-reducing conditions. Kinetic modeling indicated that the transformation trend of SMX and its TPs into the endpoint pool NERs depended on the redox conditions. Addition of wetland plant exudates and sediment dissolved organic matter at environmental concentrations affected neither the abiotic nor the biotic transformation of SMX. Overall, the iron-reducing condition was proven the most favorable and eco-friendly for SMX transformation, as it resulted in a high rate of SMX dissipation from water without an increase in toxicity and subsequent formation of significant stable NERs in sediment. Our study comprehensively revealed the abiotic and biotic transformation processes of SMX under controlled redox conditions and demonstrated iron-reducing condition allowing optimal removal of SMX in constructed wetlands. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00431354
Volume :
254
Database :
Academic Search Index
Journal :
Water Research
Publication Type :
Academic Journal
Accession number :
176390647
Full Text :
https://doi.org/10.1016/j.watres.2024.121350