Back to Search Start Over

How hetero-single-atom dispersion reconstructed electronic structure of carbon materials and regulated Fenton-like oxidation pathways.

Authors :
Liu, Shiyu
Du, Juanshan
Wang, Huazhe
Jia, Wenrui
Wu, Yaohua
Qi, Peishi
Zhan, Shuyan
Wu, Qinglian
Ma, Jun
Ren, Nanqi
Guo, Wan-Qian
Source :
Water Research. May2024, Vol. 254, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• Superior catalytic ability for PMS is achieved under a low metal loading level. • Hetero-single-atom dispersion reshapes electronic structure of the carbon carrier. • Metal sites mainly function as activity modulators rather than reactive sites. • The generation of HVMO depends on the electron densities around the metal atoms. • The ETP pathway ensures enduring oxidation efficiency in complex water matrices. Single-atom catalysts (SACs) have emerged as competitive candidates for Fenton-like oxidation of micro-pollutants in water. However, the impact of metal insertion on the intrinsic catalytic activity of carrier materials has been commonly overlooked, and the environmental risk due to metal leaching still requires attention. In contrast to previous reports, where metal sites were conventionally considered as catalytic centers, our study investigates, for the first time, the crucial catalytic role of the carbon carrier modulated through hetero-single-atom dispersion and the regulation of Fenton-like oxidation pathways. The inherent differences in electronic properties between Fe and Co can effectively trigger long-range electron rearrangement in the sp2-carbon-conjugated structure, creating more electron-rich regions for peroxymonosulfate (PMS) complexation and initiating the electron transfer process (ETP) for pollutant degradation, which imparts the synthesized catalyst (FeCo-NCB) with exceptional catalytic efficiency despite its relatively low metal content. Moreover, the FeCo-NCB/PMS system exhibits enduring decontamination efficiency in complex water matrices, satisfactory catalytic stability, and low metal leaching, signifying promising practical applications. More impressively, the spatial relationship between metal sites and electron density clouds is revealed to determine whether high-valent metal-oxo species (HVMO) are involved during the decomposition of surface complexes. Unlike single-type single-atom dispersion, where metal sites are situated within electron-rich regions, hetero-single-atom dispersion can cause the deviation of electron density clouds from the metal sites, thus hindering the in-situ oxidation of metal within the complexes and minimizing the contribution of HVMO. These findings provide new insights into the development of carbon-based SACs and advance the understanding of nonradical mechanisms underpinning Fenton-like treatments. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00431354
Volume :
254
Database :
Academic Search Index
Journal :
Water Research
Publication Type :
Academic Journal
Accession number :
176390700
Full Text :
https://doi.org/10.1016/j.watres.2024.121417