Back to Search Start Over

Mechanical and thermal properties of in situ AlN/Al-12Si composite fabricated by laser powder bed fusion.

Authors :
Xiong, Xin-Xing
Liang, Zi-Xi
Wang, Pei
Qi, Yang
Chen, Zhang-Wei
Liu, Zhi-Yuan
Wang, Xu-Lei
Shen, Qing-Liang
Kang, Nan
Zhang, Lai-Chang
Source :
Materials Characterization. Apr2024, Vol. 210, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

This work reports on the synthesis, mechanical, and thermal properties of in situ AlN/Al-12Si composite through laser powder bed fusion (LPBF) by blending Al-12Si powder with 5 vol% nano-sized BN particles. Incorporating nano-BN particles results in (i) formation of thermally stable AlN phase, preventing Si diffusion and breakdown of cellular structure, (ii) improvement of compressive yield strength (CYS), and (iii) reduction in coefficients of thermal expansion (CTE) and thermal conductivity. In addition, compared to Al-12Si alloy, the composite exhibits grain refinement from 38.8 to 1.2 μm in size, and the alteration of columnar grains (Al-12Si) to equiaxed grains (AlN/Al-12Si). At annealing temperatures above 573 K, the CYS of the unadulterated Al-12Si alloy had a ∼ 2.1 times greater reduction (from 285 to 200 MPa) compared to that of the composites (from 301 to 260 MPa). The formation of the AlN phase mitigates the significant reduction in CYS. The CTE of Al-12Si and AlN/Al-12Si are 27.3 × 10−6 K−1 and 24.3 × 10−6 K−1 respectively. There is good agreement between the measured CYS results and the calculated strengthening mechanisms. This work offers both theoretical insights and experimental data to support the use of LPBF AlN/Al-12Si composite in low- and moderate-temperature applications. • Novel in situ AlN/Al-12Si composite is successfully fabricated by laser powder bed fusion. • AlN phase generate from the reaction between BN particle and Al-12Si during laser melting. • AlN/Al-12Si composites have a higher compressive yield strength and lower thermal conductivity. • AlN phase leads to the grain refinement, improving the compressive yield strength. • AlN phase mitigates the reduction in coefficients of thermal expansion at medium temperature. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10445803
Volume :
210
Database :
Academic Search Index
Journal :
Materials Characterization
Publication Type :
Academic Journal
Accession number :
176471925
Full Text :
https://doi.org/10.1016/j.matchar.2024.113825