Back to Search Start Over

Structure and phase transitions in niobium and tantalum derived nanoscale transition metal perovskites, Ba(Ti,MV)O3, M=Nb,Ta.

Authors :
Lombardi, Julien
Yang, Long
Farahmand, Nasim
Ruffino, Anthony
Younes, Ali
Spanier, Jonathan E.
Billinge, Simon J. L.
O'Brien, Stephen
Source :
Journal of Chemical Physics. 4/7/2024, Vol. 160 Issue 13, p1-13. 13p.
Publication Year :
2024

Abstract

The prospect of creating ferroelectric or high permittivity nanomaterials provides motivation for investigating complex transition metal oxides of the form Ba(Ti, MV)O3, where M = Nb or Ta. Solid state processing typically produces mixtures of crystalline phases, rarely beyond minimally doped Nb/Ta. Using a modified sol-gel method, we prepared single phase nanocrystals of Ba(Ti, M)O3. Compositional and elemental analysis puts the empirical formulas close to BaTi0.5Nb0.5O3−δ and BaTi0.5Ta0.5O3−δ. For both materials, a reversible temperature dependent phase transition (non-centrosymmetric to symmetric) is observed in the Raman spectrum in the region 533–583 K (260–310 °C); for Ba(Ti, Nb)O3, the onset is at 543 K (270 °C); and for Ba(Ti, Ta)O3, the onset is at 533 K (260 °C), which are comparable with 390–393 K (117–120 °C) for bulk BaTiO3. The crystal structure was resolved by examination of the powder x-ray diffraction and atomic pair distribution function (PDF) analysis of synchrotron total scattering data. It was postulated whether the structure adopted at the nanoscale was single or double perovskite. Double perovskites (A2B′B″O6) are characterized by the type and extent of cation ordering, which gives rise to higher symmetry crystal structures. PDF analysis was used to examine all likely candidate structures and to look for evidence of higher symmetry. The feasible phase space that evolves includes the ordered double perovskite structure Ba2(Ti, MV)O6 (M = Nb, Ta) Fm-3m, a disordered cubic structure, as a suitable high temperature analog, Ba(Ti, MV)O3Pm-3m, and an orthorhombic Ba(Ti, MV)O3Amm2, a room temperature structure that presents an unusually high level of lattice displacement, possibly due to octahedral tilting, and indication of a highly polarized crystal. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
160
Issue :
13
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
176472875
Full Text :
https://doi.org/10.1063/5.0192488