Back to Search Start Over

Three-dimensional spontaneous flow transition in a homeotropic active nematic.

Authors :
Pratley, Vincenzo J.
Caf, Enej
Ravnik, Miha
Alexander, Gareth P.
Source :
Communications Physics. 4/13/2024, Vol. 7 Issue 1, p1-13. 13p.
Publication Year :
2024

Abstract

Active nematics are driven, non-equilibrium systems relevant to biological processes including tissue mechanics and morphogenesis, and to active metamaterials in general. We study the three-dimensional spontaneous flow transition of an active nematic in an infinite slab geometry using a combination of numerics and analytics. We show that it is determined by the interplay of two eigenmodes – called S- and D-mode – that are unstable at the same activity threshold and spontaneously breaks both rotational symmetry and chiral symmetry. The onset of the unstable modes is described by a non-Hermitian integro-differential operator, which we determine their exponential growth rates from using perturbation theory. The S-mode is the fastest growing. After it reaches a finite amplitude, the growth of the D-mode is anisotropic, being promoted perpendicular to the S-mode and suppressed parallel to it, forming a steady state with a full three-dimensional director field and a well-defined chirality. Lastly, we derive a model of the leading-order time evolution of the system close to the activity threshold. Active nematics are driven, non-equilibrium systems relevant to tissue mechanics and morphogenesis in biology, and with prospects as active metamaterials. The authors study the three-dimensional spontaneous flow transition with normal anchoring and show that it involves both chiral and rotational symmetry breaking, resulting in a fully three-dimensional flow with a twisted director field. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993650
Volume :
7
Issue :
1
Database :
Academic Search Index
Journal :
Communications Physics
Publication Type :
Academic Journal
Accession number :
176584298
Full Text :
https://doi.org/10.1038/s42005-024-01611-y