Back to Search Start Over

Non-Woven Fabric Thermal-Conductive Triboelectric Nanogenerator via Compositing Zirconium Boride.

Authors :
Wang, Xin
Liu, Jinming
Chen, Haiming
Zhou, Shihao
Mao, Dongsheng
Source :
Polymers (20734360). Mar2024, Vol. 16 Issue 6, p778. 13p.
Publication Year :
2024

Abstract

With the vigorous development of the Internet of Things, 5G technology, and artificial intelligence, flexible wearable sensors have received great attention. As a simple and low-cost power supply in wearable sensors, the triboelectric nanogenerator (TENG) has a wide range of applications in the field of flexible electronics. However, most polymers are thermally poor conductors (less than 0.1 W/(m·K)), resulting in insufficient heat dissipation performance and limiting the development of TENG. In this study, a high-performance non-woven fabric TENG with strong thermal conductivity (0.26 W/m·K) was achieved by introducing ZrB2 into the polyurethane (PU) matrix. The excellent output performance with an open circuit voltage (Voc) of 347.6 V, a short circuit current (Isc) of 3.61 μA, and an accumulated charge of 142.4 nC endows it with good sensitivity. The electrospun PU/ZrB2 composites exhibit excellent sensing performance to detect body movements in situ, such as pressing, clapping, running, and walking. Moreover, the generated power can light up 224 LED bulbs as a demonstration of self-powering ability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
16
Issue :
6
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
176593971
Full Text :
https://doi.org/10.3390/polym16060778