Back to Search Start Over

Phosphorus-Based Flame-Retardant Acrylonitrile Butadiene Styrene Copolymer with Enhanced Mechanical Properties by Combining Ultrahigh Molecular Weight Silicone Rubber and Ethylene Methyl Acrylate Copolymer.

Authors :
Ghonjizade-Samani, Farnaz
Haurie, Laia
Malet, Ramón
Pérez, Marc
Realinho, Vera
Source :
Polymers (20734360). Apr2024, Vol. 16 Issue 7, p923. 21p.
Publication Year :
2024

Abstract

The present work proposes to investigate the effect of an ultrahigh molecular weight silicone rubber (UHMW-SR) and two ethylene methyl acrylate copolymers (EMA) with different methyl acrylate (MA) content on the mechanical and fire performance of a fireproof acrylonitrile butadiene styrene copolymer (ABS) composite, with an optimum amount of ammonium polyphosphate (APP) and aluminum diethyl phosphinate (AlPi). ABS formulations with a global flame retardant weight content of 20 wt.% (ABS P) were melt-compounded, with and without EMA and UHMW-SR, in a Brabender mixer. During this batch process, ABS P formulations with UHMW-SR and/or EMA registered lower torque values than those of ABS P. By means of scanning electron microscopy (SEM), it was possible to observe that all ABS composites exhibited a homogenous structure without phase separation or particle agglomeration. Slightly improved interfacial interaction between the well-dispersed flame-retardant particles in the presence of EMA and/or UHMW-SR was also noticed. Furthermore, synergies in mechanical properties by adding both EMA and UHMW-SR into ABS P were ascertained. An enhancement of molecular mobility that contributed to the softening of ABS P was observed under dynamic mechanical thermal analysis (DMTA). An improvement of its flexibility, ductility and toughness were also registered under three-point-bending trials, and even more remarkable synergies were noticed in Charpy notched impact strength. Particularly, a 212% increase was achieved when 5 wt.% of EMA with 29 wt.% of MA and 2 wt.% of UHMW-SR in ABS P (ABS E29 S P) were added. Thermogravimetric analysis (TGA) showed that the presence of EMA copolymers in ABS P formulations did not interfere with its thermal decomposition, whereas UHMW-SR presence decreased its thermal stability at the beginning of the decomposition. Although the addition of EMA or UHMW-SR, as well as the combination of both in ABS P increased the pHRR in cone calorimetry, UL 94 V-0 classification was maintained for all flame-retarded ABS composites. In addition, through SEM analysis of cone calorimetry sample residue, a more cohesive surface char layer, with Si-O-C network formation confirmed by Fourier transform infrared (FTIR), was shown in ABS P formulations with UHMW-SR. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
16
Issue :
7
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
176595510
Full Text :
https://doi.org/10.3390/polym16070923