Back to Search
Start Over
The surface chemistry of colloidal lead halide perovskite nanowires.
- Source :
-
Journal of Chemical Physics . 4/14/2024, Vol. 160 Issue 14, p1-8. 8p. - Publication Year :
- 2024
-
Abstract
- This study explored the interplay between the ligand–surface chemistry of colloidal CsPbBr3 nanowires (NWs) and their optical properties. The ligand equilibrium was probed using nuclear magnetic resonance spectroscopy, and by perturbing the equilibrium via dilution, the gradual removal of ligands from the CsPbBr3 surface was observed. This removal was correlated with an increase in the surface defect density, as suggested by a broadening of the photoluminescence (PL) spectrum, a decrease in the PL quantum yield (PLQY), and quenching of the PL decay. These results highlight similar surface binding between the traditional CsPbBr3 quantum dots and our NWs, thereby expanding the scope of well-established ligand chemistry to a relatively unexplored nanocrystal morphology. By controlling the dilution factor, it was revealed that CsPbBr3 NWs achieve a PLQY of 72% ± 2% and a relatively long average PL lifetime of 400 ± 10 ns, without relying on additional surface passivation techniques, such as ligand exchange. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 160
- Issue :
- 14
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 176628355
- Full Text :
- https://doi.org/10.1063/5.0202609