Back to Search Start Over

The surface chemistry of colloidal lead halide perovskite nanowires.

Authors :
Oddo, Alexander M.
Arnold, Marcel
Yang, Peidong
Source :
Journal of Chemical Physics. 4/14/2024, Vol. 160 Issue 14, p1-8. 8p.
Publication Year :
2024

Abstract

This study explored the interplay between the ligand–surface chemistry of colloidal CsPbBr3 nanowires (NWs) and their optical properties. The ligand equilibrium was probed using nuclear magnetic resonance spectroscopy, and by perturbing the equilibrium via dilution, the gradual removal of ligands from the CsPbBr3 surface was observed. This removal was correlated with an increase in the surface defect density, as suggested by a broadening of the photoluminescence (PL) spectrum, a decrease in the PL quantum yield (PLQY), and quenching of the PL decay. These results highlight similar surface binding between the traditional CsPbBr3 quantum dots and our NWs, thereby expanding the scope of well-established ligand chemistry to a relatively unexplored nanocrystal morphology. By controlling the dilution factor, it was revealed that CsPbBr3 NWs achieve a PLQY of 72% ± 2% and a relatively long average PL lifetime of 400 ± 10 ns, without relying on additional surface passivation techniques, such as ligand exchange. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
160
Issue :
14
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
176628355
Full Text :
https://doi.org/10.1063/5.0202609