Back to Search
Start Over
A methodology for estimating SARS-CoV-2 importation risk by air travel into Canada between July and November 2021.
- Source :
-
BMC Public Health . 4/19/2024, p1-13. 13p. - Publication Year :
- 2024
-
Abstract
- Background: Estimating rates of disease importation by travellers is a key activity to assess both the risk to a country from an infectious disease emerging elsewhere in the world and the effectiveness of border measures. We describe a model used to estimate the number of travellers infected with SARS-CoV-2 into Canadian airports in 2021, and assess the impact of pre-departure testing requirements on importation risk. Methods: A mathematical model estimated the number of essential and non-essential air travellers infected with SARS-CoV-2, with the latter requiring a negative pre-departure test result. The number of travellers arriving infected (i.e. imported cases) depended on air travel volumes, SARS-CoV-2 exposure risk in the departure country, prior infection or vaccine acquired immunity, and, for non-essential travellers, screening from pre-departure molecular testing. Importation risk was estimated weekly from July to November 2021 as the number of imported cases and percent positivity (PP; i.e. imported cases normalised by travel volume). The impact of pre-departure testing was assessed by comparing three scenarios: baseline (pre-departure testing of all non-essential travellers; most probable importation risk given the pre-departure testing requirements), counterfactual scenario 1 (no pre-departure testing of fully vaccinated non-essential travellers), and counterfactual scenario 2 (no pre-departure testing of non-essential travellers). Results: In the baseline scenario, weekly imported cases and PP varied over time, ranging from 145 to 539 cases and 0.15 to 0.28%, respectively. Most cases arrived from the USA, Mexico, the United Kingdom, and France. While modelling suggested that essential travellers had a higher weekly PP (0.37 – 0.65%) than non-essential travellers (0.12 – 0.24%), they contributed fewer weekly cases (62 – 154) than non-essential travellers (84 – 398 per week) given their lower travel volume. Pre-departure testing was estimated to reduce imported cases by one third (counterfactual scenario 1) to one half (counterfactual scenario 2). Conclusions: The model results highlighted the weekly variation in importation by traveller group (e.g., reason for travel and country of departure) and enabled a framework for measuring the impact of pre-departure testing requirements. Quantifying the contributors of importation risk through mathematical simulation can support the design of appropriate public health policy on border measures. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14712458
- Database :
- Academic Search Index
- Journal :
- BMC Public Health
- Publication Type :
- Academic Journal
- Accession number :
- 176774216
- Full Text :
- https://doi.org/10.1186/s12889-024-18563-1