Back to Search Start Over

Research on Fuel-Saving and Environmentally Friendly Approach Trajectory Considering Air Traffic Management Intention.

Authors :
Yuan Jie
Pei Yang
Ge Yuxue
Source :
Journal of Aircraft. Mar2024, Vol. 61 Issue 2, p440-450. 11p.
Publication Year :
2024

Abstract

Civilian aviation continues to contribute significantly to the total economic and environmental impact of aeronautics. Reduction of the fuel burn and environmental impact of civilian aviation is critical to the overall sustainability of the industry, and it can be accomplished, in part, through the optimization of arrival and approach procedures. This paper proposes the development of a method for measuring the degree of compliance of optimized approach trajectories with air traffic management (ATM) intentions, using an intention compliance level (ICL) indicator. Based on fuzzy logic, this measure reflects the extent to which approach trajectories satisfy the required time-of-arrival constraints. This research demonstrates an approach trajectory strategy that maximizes the ICL, maintains compliance with ATM intent, and achieves efficiency goals inclusive of reduced fuel consumption through selective airspeed changes. Simulations on the Airbus A320 indicate that achieving the optimal trajectory and flight parameters can significantly guide trajectory-based operations to minimize airline economic costs and reduce environmental impact while complying with ATM commands. In this paper we will organize the data as follows. The Introduction will summarize past research as a means of identifying the gaps that this research seeks to bridge and introduce the premise of our findings. Section II proposes the concept of ICL to evaluate the relationship between flight time and the required time of arrival and establishes an en-route descent trajectory model. Section III constructs the optimization strategy based on simulated annealing genetic algorithm (SAGA), evaluates the effectiveness of the algorithm, and verifies the contributions of the ICL in a basic scenario. Section IV analyzes the impacts of various factors on the optimization results in a complex scenario. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218669
Volume :
61
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Aircraft
Publication Type :
Academic Journal
Accession number :
176792504
Full Text :
https://doi.org/10.2514/1.C036593