Back to Search Start Over

Preparation of Ultrafine Co- and Ni-Coated (Ti,W,Mo,Ta)(C,N) Powders and Their Influence on the Microstructure of Ti(C,N)-Based Cermets.

Authors :
Zhao, Zaiyang
Jia, Pengmin
Zhang, Yuhui
Ma, Lili
Sun, Jingjing
Xu, Yiping
Wu, Yurong
Source :
Materials (1996-1944). Apr2024, Vol. 17 Issue 8, p1807. 15p.
Publication Year :
2024

Abstract

The use of metal-coated ceramic powders not only effectively enhances the wettability of the metal–ceramic interface but also promotes a more uniform microstructure in Ti(C,N)-based cermets, which is advantageous for improving their mechanical properties. In this study, ultrafine Co- and Ni-coated (Ti,W,Mo,Ta)(C,N) powders were synthesized via the spray-drying-in-situ carbothermal reduction method. Subsequently, Ti(C,N)-based cermets were effectively fabricated using the as-prepared ultrafine Co- and Ni-coated (Ti,W,Mo,Ta)(C,N) powders. The impact of reaction temperature, heating rate, and isothermal time on the phase and microstructure of prepared powders was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Additionally, the microstructure of the as-sintered cermets was experimentally investigated. The findings reveal that the complete reduction of Co and Ni metal salts, pre-coated on the surface of (Ti,W,Mo,Ta)(C,N) particles, can be achieved through rapid heating (10 °C/min) in a specific temperature range (600–1000 °C) with an isothermal time of 3 h at a lower reduction temperature (1000 °C). The synthesized powders have only two phases: the (Ti,W,Mo,Ta)(C,N) phase and Co/Ni phase, and no other heterogeneous phases were observed with an oxygen content of 0.261 wt.%. Notably, the conventional core–rim structure was not dominant in the cermets obtained from the prepared Co- and Ni-coated (Ti,W,Mo,Ta)(C,N) powders. Moreover, the heterogeneous segregation effect of the Co/Ni coating on the ultrafine powder particles resulted in a finer microstructure than the traditional cermets with the same composition. However, the grain size is mainly in the range of 0.5–0.8 μm. The weaker residual stresses at the core and rim interfaces and the finer particle distributions could theoretically enhance the toughness of Ti(C,N)-based cermets, simultaneously. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
8
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
176878207
Full Text :
https://doi.org/10.3390/ma17081807