Back to Search Start Over

Study of Energy Flow Mechanisms in High Power Device Converters.

Authors :
Zhao, Zheyuan
Jin, Qianzheng
Wu, Yingjie
Li, Gen
Xiang, Tiange
Source :
Energies (19961073). Apr2024, Vol. 17 Issue 8, p1980. 11p.
Publication Year :
2024

Abstract

The work in this paper is applied to the Zhangbei Power grid. In the flexible direct current (DC) power system, the fault current rises extremely fast when a DC fault occurs. The requirements for the peak of breaking current and fault energy absorption of DC circuit breakers (DCCBs) increase linearly, which significantly increases the cost of the equipment. Therefore, in order to reduce the design difficulty of DCCBs, this paper proposes a strategy to control energy after the fault occurs. Firstly, the energy dimension is added on the basis of the traditional vector control of MMC, which constitutes a three-dimensional energy direct control. Subsequently, the architectures of energy fluctuation control and feedforward control are proposed. The influencing mechanisms for the peak fault current, peak fault voltage and energy dissipation are analyzed. Finally, the simulation of energy fluctuation control and feedforward control is constructed on PSCAD/EMTDC. The simulation results show that the energy fluctuation control is obviously better than the conventional three-dimensional energy control, and the feedforward energy control is further improved on this basis. Compared with the conventional vector control, the peak energy is reduced by 45.43% and the peak current is reduced by 25.39%, which helps to simplify the equipment design and reduce the equipment cost. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
8
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
176904605
Full Text :
https://doi.org/10.3390/en17081980